Reaxense

CNS Compound Library

Fundamental physico-chemical features required for optimal brain exposure of successful CNS drugs have been extensively studied in an attempt to define the attributes related to their ability to penetrate the blood-brain barrier (BBB) and exhibit CNS activity. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas.

Reaxense has designed its CNS Compound Library (6,492 molecules) applying both the hard cutoffs crucial for CNSrelated drugs as well as prospective alignment of drug-like attributes such as high permeability, low P-gp efflux liability, low metabolic clearance, and high safety for each molecule.

Features:

- 6,492 drug-like molecules with predicted BBB permeability
- Each compound has high CNS Multiparameter Optimization score
- No pan-assay interference (PAINS) compounds
- Compounds with reactive and toxic groups filtered out
- High diversity over the library
- Purity $\mathbf{> 9 0 \%}$; spectral data available

Selection Criteria:

Parameter	Value
Number of Sulphur (S) Atoms	≤ 1
Number of Amide Groups	≤ 1
Number of Hydrogen Bond Acceptors (HBA)	≤ 6
Number of Rotatable Bonds (RB)	≤ 8
Number of COOH Groups	0
CNS Multiparameter Optimization (CNS MPO)*	≥ 4

${ }^{*}$ Using a set of six physicochemical parameters (ClogP, ClogD, MW, TPSA, HBD, $\mathrm{p} K_{\mathrm{a}}$), the novel CNS MPO algorithm showed that 74% of marketed CNS drugs displayed a high CNS MPO score (MPO desirability score ≥ 4, using a scale of 0-6) (ACS Chem.

Structure examples:

