Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


Our top-notch dedicated system is used to design specialised libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
O14607

UPID:
UTY_HUMAN

ALTERNATIVE NAMES:
Ubiquitously-transcribed TPR protein on the Y chromosome; Ubiquitously-transcribed Y chromosome tetratricopeptide repeat protein; [histone H3]-trimethyl-L-lysine(27) demethylase UTY

ALTERNATIVE UPACC:
O14607; A8K9Z3; E1U199; E1U1A0; F5H4V7; F8W8R7; O14608

BACKGROUND:
The protein Histone demethylase UTY, known for its alternative names such as Ubiquitously-transcribed Y chromosome tetratricopeptide repeat protein, is a male-specific histone demethylase. It is involved in the critical process of removing methyl groups from 'Lys-27' in histone H3, a key epigenetic marker for gene regulation.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Histone demethylase UTY holds promise for unveiling novel therapeutic avenues. Given its essential role in histone modification, this protein could be a target for interventions in diseases where epigenetic regulation is disrupted.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.