Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for receptors.


 

Fig. 1. The screening workflow of Receptor.AI

It includes extensive molecular simulations of the receptor in its native membrane environment and the ensemble virtual screening accounting for its conformational mobility. In the case of dimeric or oligomeric receptors, the whole functional complex is modelled, and the tentative binding pockets are determined on and between the subunits to cover the whole spectrum of possible mechanisms of action.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
O14842

UPID:
FFAR1_HUMAN

ALTERNATIVE NAMES:
G-protein coupled receptor 40

ALTERNATIVE UPACC:
O14842; Q0VAS2; Q4VBL4

BACKGROUND:
The Free fatty acid receptor 1, known alternatively as G-protein coupled receptor 40, plays a crucial role in managing glucose levels and bone health. It binds to saturated and unsaturated fatty acids, triggering insulin and possibly GLP-1 secretion. Its signaling pathways, involving G(q) and G(i) proteins, increase intracellular calcium and inhibit osteoclast differentiation, highlighting its importance in inflammation and bone homeostasis.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Free fatty acid receptor 1 offers promising avenues for developing new therapeutic approaches.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.