Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology employs molecular simulations to explore a wide array of proteins, capturing their dynamic states both individually and within complexes. Through ensemble virtual screening, we address conformational mobility, uncovering binding sites within functional regions and remote allosteric locations. This thorough exploration ensures no potential mechanism of action is overlooked, aiming to discover novel therapeutic targets and lead compounds across an extensive spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
O15525

UPID:
MAFG_HUMAN

ALTERNATIVE NAMES:
V-maf musculoaponeurotic fibrosarcoma oncogene homolog G; hMAF

ALTERNATIVE UPACC:
O15525

BACKGROUND:
Transcription factor MafG, alternatively named hMAF, functions as a critical regulatory node in cellular transcription networks. It switches roles from a repressor to an activator by forming heterodimers with proteins such as Fos and NFE2L2, thereby modulating the transcription of key genes involved in erythropoiesis and possibly extracellular H(+) signal transduction.

THERAPEUTIC SIGNIFICANCE:
Exploring the multifaceted functions of Transcription factor MafG offers a promising avenue for the development of novel therapeutic interventions.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.