Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes in-depth molecular simulations of both the catalytic and allosteric binding pockets, with ensemble virtual screening focusing on their conformational flexibility. For modulators, the process includes considering the structural shifts due to reaction intermediates to boost activity and selectivity.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
O43681

UPID:
GET3_HUMAN

ALTERNATIVE NAMES:
Arsenical pump-driving ATPase; Arsenite-stimulated ATPase; Guided entry of tail-anchored proteins factor 3, ATPase; Transmembrane domain recognition complex 40 kDa ATPase subunit; hARSA-I; hASNA-I

ALTERNATIVE UPACC:
O43681; A6NHP8; A8K740; Q53FC6; Q92849

BACKGROUND:
The ATPase GET3, also referred to as hASNA-I, is integral for the targeted delivery and insertion of tail-anchored proteins into the endoplasmic reticulum. This process is essential for maintaining cellular function and is regulated through ATP binding and hydrolysis, highlighting the protein's role in cellular homeostasis and signaling pathways, including potentially insulin signaling.

THERAPEUTIC SIGNIFICANCE:
ATPase GET3's association with rapid progression and fatal outcomes in cardiomyopathy, dilated, 2H, underscores the protein's therapeutic significance. Exploring ATPase GET3's function offers a promising avenue for developing treatments for this life-threatening condition.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.