Focused On-demand Libraries - Receptor.AI Collaboration
Explore the Potential with AI-Driven Innovation
The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.
The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.
Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.
Our high-tech, dedicated method is applied to construct targeted libraries for protein-protein interfaces.
The approach involves in-depth molecular simulations of the target protein by itself and in complex with its primary partner proteins, paired with ensemble virtual screening that factors in conformational mobility in both the unbound and complex states. The tentative binding pockets are identified at the protein-protein interaction interface and in distant allosteric areas, aiming to capture the full range of mechanisms of action.
Our library stands out due to several important features:
- The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.
- Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.
- Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.
- Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.
Receptor.AI
O60934
UPID:
NBN_HUMAN
ALTERNATIVE NAMES:
Cell cycle regulatory protein p95; Nijmegen breakage syndrome protein 1
ALTERNATIVE UPACC:
O60934; B2R626; B2RNC5; O60672; Q32NF7; Q53FM6; Q63HR6; Q7LDM2