Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology employs molecular simulations to explore a wide array of proteins, capturing their dynamic states both individually and within complexes. Through ensemble virtual screening, we address conformational mobility, uncovering binding sites within functional regions and remote allosteric locations. This thorough exploration ensures no potential mechanism of action is overlooked, aiming to discover novel therapeutic targets and lead compounds across an extensive spectrum of biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
O75140

UPID:
DEPD5_HUMAN

ALTERNATIVE NAMES:
DEP domain-containing protein 5

ALTERNATIVE UPACC:
O75140; A6H8V6; A8MPX9; B4DH93; B9EGN9; Q5K3V5; Q5THY9; Q5THZ0; Q5THZ1; Q5THZ3; Q68DR1; Q6MZX3; Q6PEZ1; Q9UGV8; Q9UH13

BACKGROUND:
The GATOR1 complex, featuring the protein DEPDC5, is integral to inhibiting mTORC1 signaling under amino acid depletion. DEPDC5's interaction with Rag GTPases facilitates the regulation of mTORC1 activity, highlighting its crucial role in cellular amino acid response.

THERAPEUTIC SIGNIFICANCE:
Involvement of DEPDC5 in familial focal epilepsy underscores its potential as a therapeutic target. The disease's link to DEPDC5 mutations suggests that targeting this protein's pathway could offer new avenues for treatment strategies.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.