Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
O95391

UPID:
SLU7_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
O95391; D3DQK2; Q3LUJ0; Q3LUJ1; Q6RXQ5; Q96FM9

BACKGROUND:
The Pre-mRNA-splicing factor SLU7 is integral to the spliceosome, facilitating the precise excision of introns and joining of exons. This protein ensures the fidelity of splicing by holding exon 1 and accurately identifying AG sites, crucial for the generation of functional mRNA. Its involvement in alternative splicing regulation further emphasizes its significance in gene expression.

THERAPEUTIC SIGNIFICANCE:
Exploring the function of Pre-mRNA-splicing factor SLU7 offers a promising pathway to novel therapeutic interventions. Given its essential role in pre-mRNA splicing, targeting SLU7 could provide new avenues for correcting splicing-related disorders.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.