Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The method includes detailed molecular simulations of the catalytic and allosteric binding pockets, along with ensemble virtual screening that considers their conformational flexibility. In the design of modulators, structural changes induced by reaction intermediates are taken into account to enhance activity and selectivity.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
O95989

UPID:
NUDT3_HUMAN

ALTERNATIVE NAMES:
Diadenosine hexaphosphate hydrolase; Endopolyphosphatase; Nucleoside diphosphate-linked moiety X motif 3; m7GpppN-mRNA hydrolase; m7GpppX diphosphatase

ALTERNATIVE UPACC:
O95989; B2R8N4

BACKGROUND:
Diphosphoinositol polyphosphate phosphohydrolase 1 exhibits diverse enzymatic activities, including diphosphoinositol polyphosphate phosphohydrolase, diadenosine hexaphosphate hydrolase, and m7GpppN-mRNA hydrolase. It acts as a decapping enzyme, modulating mRNA stability and affecting cell motility. The enzyme's substrate specificity is modulated by zinc, magnesium, and manganese, highlighting its role in cellular signaling and energy metabolism.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Diphosphoinositol polyphosphate phosphohydrolase 1 could open doors to potential therapeutic strategies.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.