Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


We employ our advanced, specialised process to create targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
P01889

UPID:
HLAB_HUMAN

ALTERNATIVE NAMES:
Human leukocyte antigen B

ALTERNATIVE UPACC:
P01889; A0A2I6Q7B5; B0V0B8; G3GN01; O02862; O02956; O02957; O02960; O19555; O19556; O19595; O19615; O19624; O19625; O19627; O19641; O19651; O19675; O19692; O19758; O19779; O19783; O46702; O62897; O62901; O62915; O62917; O62919; O77933; O77959; O78053; O78138; O78160; O78163; O78172; O78173; O78180; O78217; O95730; O98140; P01890; P03989; P10317; P10318; P10319; P10320; P18463; P18464; P18465; P19373; P30460; P30461; P30462; P30463; P30464; P30465; P30466; P30467; P30468; P30469; P30470; P30471; P30472; P30473; P30474; P30475; P30476; P30477; P30478; P30479; P30480; P30481; P30482; P30483; P30484; P30485; P30486; P30487; P30488; P30489; P30490; P30491; P30492; P30493; P30494; P30495; P30496; P30497; P30498; P30513; P30685; P79489; P79490; P79496; P79504; P79523; P79524; P79542; P79555; Q04826; Q08136; Q29633; Q29636; Q29638; Q29661; Q29665; Q29678; Q29679; Q29681; Q29693; Q29695; Q29697; Q29718; Q29742; Q29749; Q29762; Q29764; Q29829; Q29836; Q29842; Q29845; Q29846; Q29847; Q29848; Q29850; Q29851; Q29852; Q29854; Q29855; Q29857; Q29858; Q29861; Q29924; Q29925; Q29933; Q29935; Q29936; Q29940; Q29953; Q29961; Q29982; Q30173; Q30198; Q31603; Q31610; Q31612; Q31613; Q546L8; Q546M4; Q5JP37; Q5QT24; Q5RIP1; Q5SRJ2; Q5TK76; Q5TK77; Q860I4; Q861B5; Q8HWF0; Q8MGQ3; Q8MHN4; Q8SNC5; Q95343; Q95344; Q95365; Q95369; Q95392; Q95HA3; Q95HA8; Q95HM9; Q95IA6; Q95IB8; Q95IH5; Q95J00; Q96IT9; Q9BCM6; Q9BCM7; Q9BCM8; Q9BD06; Q9BD38; Q9BD43; Q9GIL3; Q9GIM3; Q9GIX1; Q9GIY5; Q9GIZ0; Q9GIZ9; Q9GJ00; Q9GJ17; Q9GJ20; Q9GJ23; Q9GJ31; Q9GJF0; Q9GJM7; Q9MX21; Q9MY37; Q9MY42; Q9MY43; Q9MY61; Q9MY75; Q9MY78; Q9MY79; Q9MY84; Q9MY92; Q9MY93; Q9MY94; Q9MYB8; Q9MYC3; Q9MYC7; Q9MYF4; Q9MYG1; Q9TP35; Q9TP36; Q9TP37; Q9TP95; Q9TPQ7; Q9TPQ9; Q9TPR2; Q9TPR4; Q9TPS6; Q9TPT2; Q9TPT4; Q9TPT6; Q9TPV2; Q9TQG1; Q9TQH3; Q9TQH6; Q9TQH7; Q9TQH8; Q9TQH9; Q9TQM2; Q9TQN4; Q9TQN6; Q9UQS8; Q9UQT0

BACKGROUND:
HLA class I histocompatibility antigen, B alpha chain, known as HLA-B, is essential for the adaptive immune system. It presents intracellular peptide antigens to T cells, crucial for identifying and eliminating pathogens and cancer cells. The specificity of HLA-B in presenting peptides from various pathogens, including its role in controlling HIV-1 infection, is vital for immune defense.

THERAPEUTIC SIGNIFICANCE:
Given HLA-B's critical role in immune response and its association with diseases such as Stevens-Johnson syndrome and ankylosing spondylitis, targeting HLA-B could offer new avenues in drug discovery. Leveraging its antigen-presenting capabilities could enhance immunotherapeutic approaches for infectious diseases and cancer.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.