Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology employs molecular simulations to explore a wide array of proteins, capturing their dynamic states both individually and within complexes. Through ensemble virtual screening, we address conformational mobility, uncovering binding sites within functional regions and remote allosteric locations. This thorough exploration ensures no potential mechanism of action is overlooked, aiming to discover novel therapeutic targets and lead compounds across an extensive spectrum of biological functions.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
P02452

UPID:
CO1A1_HUMAN

ALTERNATIVE NAMES:
Alpha-1 type I collagen

ALTERNATIVE UPACC:
P02452; O76045; P78441; Q13896; Q13902; Q13903; Q14037; Q14992; Q15176; Q15201; Q16050; Q59F64; Q7KZ30; Q7KZ34; Q8IVI5; Q8N473; Q9UML6; Q9UMM7

BACKGROUND:
The Collagen alpha-1(I) chain, a fundamental component of type I collagen, is integral to the structural scaffolding in connective tissues. Its fibrillar nature contributes to the tensile strength and durability of skin, bone, and tendons, highlighting its essential role in human physiology.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Collagen alpha-1(I) chain could open doors to potential therapeutic strategies. Its involvement in diseases such as Osteogenesis Imperfecta, Ehlers-Danlos syndrome, and Osteoporosis, where connective tissue integrity is compromised, presents opportunities for developing treatments that restore normal function and improve quality of life for affected individuals.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.