Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The method includes detailed molecular simulations of the catalytic and allosteric binding pockets, along with ensemble virtual screening that considers their conformational flexibility. In the design of modulators, structural changes induced by reaction intermediates are taken into account to enhance activity and selectivity.


Key features that set our library apart include:


  • The Receptor.AI platform integrates extensive information about the target protein, such as historical experiments, academic research, known ligands, and structural insights, thereby increasing the likelihood of identifying highly relevant compounds.

  • The platform’s sophisticated molecular simulations are designed to discover potential binding sites, ensuring that our focused library is optimal for the discovery of allosteric inhibitors and binders for cryptic pockets.

  • With over 50 customisable AI models, verified through extensive testing in commercial drug discovery and research, Receptor.AI is efficient, reliable, and precise. These models are essential in the production of our focused libraries.

  • Receptor.AI not only produces focused libraries but also provides full services and solutions at every stage of preclinical drug discovery, with a success-based pricing structure that aligns our interests with the success of your project.


PARTNER
Receptor.AI
 
UPACC
P09871

UPID:
C1S_HUMAN

ALTERNATIVE NAMES:
C1 esterase; Complement component 1 subcomponent s

ALTERNATIVE UPACC:
P09871; D3DUT4; Q9UCU7; Q9UCU8; Q9UCU9; Q9UCV0; Q9UCV1; Q9UCV2; Q9UCV3; Q9UCV4; Q9UCV5; Q9UM14

BACKGROUND:
Complement C1s subcomponent, a crucial serine protease in the complement system, activates C2 and C4, initiating an immune response. Known alternatively as C1 esterase, it forms part of the C1 complex with C1q and C1r.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Complement C1s subcomponent could open doors to potential therapeutic strategies for diseases like Complement component C1s deficiency and Ehlers-Danlos syndrome, periodontal type, 2, offering hope for innovative treatments.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.