Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
P0DN84

UPID:
DWORF_HUMAN

ALTERNATIVE NAMES:
Dwarf open reading frame; Small transmembrane regulator of ion transport 1

ALTERNATIVE UPACC:
P0DN84; A0A1B0GTW0

BACKGROUND:
Sarcoplasmic/endoplasmic reticulum calcium ATPase regulator DWORF, identified by its alternative names Dwarf open reading frame and Small transmembrane regulator of ion transport 1, is a key regulator of skeletal muscle activity. It does not directly stimulate SERCA pump activity but enhances sarcoplasmic reticulum Ca(2+) uptake and myocyte contractility. This is achieved by displacing the SERCA inhibitory peptides sarcolipin, phospholamban, and myoregulin, thereby enhancing the activity of ATP2A1/SERCA1 ATPase.

THERAPEUTIC SIGNIFICANCE:
The exploration of Sarcoplasmic/endoplasmic reticulum calcium ATPase regulator DWORF's function offers a promising avenue for developing therapeutic strategies aimed at improving muscle function and treating conditions associated with calcium imbalance.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.