Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes in-depth molecular simulations of both the catalytic and allosteric binding pockets, with ensemble virtual screening focusing on their conformational flexibility. For modulators, the process includes considering the structural shifts due to reaction intermediates to boost activity and selectivity.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
P10515

UPID:
ODP2_HUMAN

ALTERNATIVE NAMES:
70 kDa mitochondrial autoantigen of primary biliary cirrhosis; Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex; M2 antigen complex 70 kDa subunit; Pyruvate dehydrogenase complex component E2

ALTERNATIVE UPACC:
P10515; Q16783; Q53EP3

BACKGROUND:
The protein, also known as the M2 antigen complex 70 kDa subunit, is integral to the pyruvate dehydrogenase complex, facilitating the crucial step of pyruvate to acetyl-CoA conversion. This process is essential for connecting glycolysis and the tricarboxylic acid cycle, fundamental pathways in cellular energy production.

THERAPEUTIC SIGNIFICANCE:
Given its critical function in metabolism, mutations in the gene encoding this protein result in Pyruvate dehydrogenase E2 deficiency, leading to severe metabolic disorders. Targeting this protein's pathway offers a promising avenue for therapeutic intervention in such metabolic diseases.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.