Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Key features that set our library apart include:


  • The Receptor.AI platform integrates extensive information about the target protein, such as historical experiments, academic research, known ligands, and structural insights, thereby increasing the likelihood of identifying highly relevant compounds.

  • The platform’s sophisticated molecular simulations are designed to discover potential binding sites, ensuring that our focused library is optimal for the discovery of allosteric inhibitors and binders for cryptic pockets.

  • With over 50 customisable AI models, verified through extensive testing in commercial drug discovery and research, Receptor.AI is efficient, reliable, and precise. These models are essential in the production of our focused libraries.

  • Receptor.AI not only produces focused libraries but also provides full services and solutions at every stage of preclinical drug discovery, with a success-based pricing structure that aligns our interests with the success of your project.


PARTNER
Receptor.AI
 
UPACC
P18846

UPID:
ATF1_HUMAN

ALTERNATIVE NAMES:
Activating transcription factor 1; Protein TREB36

ALTERNATIVE UPACC:
P18846; B4DRF9; P25168; Q9H4A8

BACKGROUND:
The protein Cyclic AMP-dependent transcription factor ATF-1, with alternative names Activating transcription factor 1 and Protein TREB36, is integral to gene expression regulation. It specifically binds to the cAMP response element and the Tax-responsive element of HTLV-I, influencing PKA-induced stimulation of CRE-reporter genes. Additionally, ATF-1 plays a role in the repression of antioxidant detoxification genes, contributing to cell proliferation and transformation.

THERAPEUTIC SIGNIFICANCE:
ATF-1's involvement in Angiomatoid fibrous histiocytoma, through chromosomal aberrations that generate chimeric ATF1/FUS and ATF1/EWSR1 proteins, highlights its potential in disease pathogenesis. The exploration of ATF-1's functions and interactions offers promising avenues for developing targeted therapies for this and potentially other diseases.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.