Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

This approach involves comprehensive molecular simulations of the catalytic and allosteric binding pockets and ensemble virtual screening that accounts for their conformational flexibility. In the case of designing modulators, the structural adjustments caused by reaction intermediates are considered to improve activity and selectivity.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
P23378

UPID:
GCSP_HUMAN

ALTERNATIVE NAMES:
Glycine cleavage system P protein; Glycine decarboxylase; Glycine dehydrogenase (aminomethyl-transferring)

ALTERNATIVE UPACC:
P23378; Q2M2F8

BACKGROUND:
The enzyme Glycine dehydrogenase, integral to mitochondrial function, is crucial for glycine breakdown. Known alternatively as Glycine decarboxylase, it engages in the transfer of the methylamine part of glycine to the H protein's lipoamide, a key step in the glycine cleavage system.

THERAPEUTIC SIGNIFICANCE:
Linked to Non-ketotic hyperglycinemia, a disorder resulting from glycine accumulation and severe neurological issues, the study of Glycine dehydrogenase opens doors to potential therapeutic strategies for managing this genetic condition.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.