Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

This approach involves comprehensive molecular simulations of the catalytic and allosteric binding pockets and ensemble virtual screening that accounts for their conformational flexibility. In the case of designing modulators, the structural adjustments caused by reaction intermediates are considered to improve activity and selectivity.


Key features that set our library apart include:


  • The Receptor.AI platform integrates extensive information about the target protein, such as historical experiments, academic research, known ligands, and structural insights, thereby increasing the likelihood of identifying highly relevant compounds.

  • The platform’s sophisticated molecular simulations are designed to discover potential binding sites, ensuring that our focused library is optimal for the discovery of allosteric inhibitors and binders for cryptic pockets.

  • With over 50 customisable AI models, verified through extensive testing in commercial drug discovery and research, Receptor.AI is efficient, reliable, and precise. These models are essential in the production of our focused libraries.

  • Receptor.AI not only produces focused libraries but also provides full services and solutions at every stage of preclinical drug discovery, with a success-based pricing structure that aligns our interests with the success of your project.


PARTNER
Receptor.AI
 
UPACC
P30876

UPID:
RPB2_HUMAN

ALTERNATIVE NAMES:
DNA-directed RNA polymerase II 140 kDa polypeptide; DNA-directed RNA polymerase II subunit B; RNA polymerase II subunit 2; RNA polymerase II subunit B2

ALTERNATIVE UPACC:
P30876; A8K1A8; Q8IZ61

BACKGROUND:
The protein DNA-directed RNA polymerase II subunit RPB2, with alternative names such as RNA polymerase II subunit B2, is integral to the transcription machinery, synthesizing mRNA and non-coding RNAs. It forms part of the core element of RNA polymerase II, which is essential for gene expression. The dynamic structure of RPB2, including its central cleft and clamp element, is vital for DNA template binding and transcription process efficiency.

THERAPEUTIC SIGNIFICANCE:
Exploring the functionalities of DNA-directed RNA polymerase II subunit RPB2 holds promise for unveiling novel therapeutic avenues.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.