Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The procedure entails thorough molecular simulations of the catalytic and allosteric binding pockets, accompanied by ensemble virtual screening that factors in their conformational flexibility. When developing modulators, the structural modifications brought about by reaction intermediates are factored in to optimize activity and selectivity.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
P31944

UPID:
CASPE_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
P31944; O95823; Q3SYC9

BACKGROUND:
Caspase-14 specializes in epidermal differentiation and is crucial for the maturation of the epidermis. It targets the [WY]-X-X-D motif and processes prosaposin in the epidermis, indicating its significant role in skin health. Additionally, it may contribute to retinal pigment epithelium cell barrier function.

THERAPEUTIC SIGNIFICANCE:
Given Caspase-14's critical function in skin disorders such as congenital ichthyosis, exploring its mechanisms offers a promising avenue for developing targeted treatments. Understanding the role of Caspase-14 could open doors to potential therapeutic strategies.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.