Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


Our high-tech, dedicated method is applied to construct targeted libraries for receptors.


 

Fig. 1. The screening workflow of Receptor.AI

It features thorough molecular simulations of the receptor within its native membrane environment, complemented by ensemble virtual screening that considers its conformational mobility. For dimeric or oligomeric receptors, the full functional complex is constructed, and tentative binding sites are determined on and between the subunits to cover the entire spectrum of potential mechanisms of action.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
P34981

UPID:
TRFR_HUMAN

ALTERNATIVE NAMES:
Thyroliberin receptor

ALTERNATIVE UPACC:
P34981; Q2M339

BACKGROUND:
The Thyrotropin-releasing hormone receptor, identified by the alternative name Thyroliberin receptor, is integral to thyroid function. It triggers the activation of key signaling pathways upon interaction with its ligand, playing a vital role in maintaining hormonal balance.

THERAPEUTIC SIGNIFICANCE:
Given its association with congenital Hypothyroidism, non-goitrous type 7, exploring the Thyrotropin-releasing hormone receptor's mechanisms offers promising avenues for therapeutic intervention. The receptor's role in thyroid hormone regulation underscores its potential as a target for innovative drug development.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.