Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


Our high-tech, dedicated method is applied to construct targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The procedure entails thorough molecular simulations of the catalytic and allosteric binding pockets, accompanied by ensemble virtual screening that factors in their conformational flexibility. When developing modulators, the structural modifications brought about by reaction intermediates are factored in to optimize activity and selectivity.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
P35237

UPID:
SPB6_HUMAN

ALTERNATIVE NAMES:
Cytoplasmic antiproteinase; Peptidase inhibitor 6; Placental thrombin inhibitor

ALTERNATIVE UPACC:
P35237; B2RBA8; Q59F97; Q5TD06; Q7Z2Y7; Q96J44; Q9UDI7

BACKGROUND:
The protein Serpin B6, with its roles in inhibiting key serine proteinases such as cathepsin G, kallikrein-8, and thrombin, is essential for maintaining cellular integrity under stress, particularly in the inner ear. Its ability to prevent leakage of lysosomal content is vital for cell survival.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Serpin B6 could open doors to potential therapeutic strategies, especially considering its link to Deafness, autosomal recessive, 91. This protein's function in protecting against sensorineural hearing loss presents a promising avenue for research and drug development.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.