Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


Our high-tech, dedicated method is applied to construct targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

This approach involves comprehensive molecular simulations of the catalytic and allosteric binding pockets and ensemble virtual screening that accounts for their conformational flexibility. In the case of designing modulators, the structural adjustments caused by reaction intermediates are considered to improve activity and selectivity.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
P38606

UPID:
VATA_HUMAN

ALTERNATIVE NAMES:
V-ATPase 69 kDa subunit; Vacuolar ATPase isoform VA68; Vacuolar proton pump subunit alpha

ALTERNATIVE UPACC:
P38606; B2RBR8; B7Z1R5; D3DN75; Q53YD9; Q96DY6; Q9UHY3

BACKGROUND:
The V-type proton ATPase catalytic subunit A, known for its alternative names such as Vacuolar ATPase isoform VA68, is pivotal in maintaining cellular pH levels through its proton pump activity. It plays a significant role in iron metabolism under aerobic conditions, affecting HIF1A hydroxylation and degradation. Additionally, its contribution to neurite outgrowth and the uncoating process of Rabies virus underscores its importance in both neuronal development and microbial infection.

THERAPEUTIC SIGNIFICANCE:
The protein's involvement in diseases like Cutis laxa, autosomal recessive, 2D, and infantile or early childhood epileptic encephalopathy suggests that insights into its function could lead to breakthroughs in treating these debilitating conditions. Exploring the therapeutic potential of targeting the V-type proton ATPase catalytic subunit A offers a promising frontier in the realm of drug development.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.