Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


We employ our advanced, specialised process to create targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our strategy employs molecular simulations to explore an extensive range of proteins, capturing their dynamics both individually and within complexes with other proteins. Through ensemble virtual screening, we address proteins' conformational mobility, uncovering key binding sites at both functional regions and remote allosteric locations. This comprehensive investigation ensures a thorough assessment of all potential mechanisms of action, with the goal of discovering innovative therapeutic targets and lead molecules across across diverse biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
P38646

UPID:
GRP75_HUMAN

ALTERNATIVE NAMES:
75 kDa glucose-regulated protein; Heat shock 70 kDa protein 9; Mortalin; Peptide-binding protein 74

ALTERNATIVE UPACC:
P38646; B2RCM1; P30036; P31932; Q1HB43; Q53H23; Q6GU03; Q9BWB7; Q9UC56

BACKGROUND:
Stress-70 protein, mitochondrial, also recognized as Mortalin and Heat shock 70 kDa protein 9 among other names, is integral to the formation of mitochondrial iron-sulfur clusters. This process is essential for the proper function of various cellular activities, including erythropoiesis, and may influence cell growth and aging.

THERAPEUTIC SIGNIFICANCE:
Given its association with conditions such as Anemia, sideroblastic, 4, and Even-plus syndrome, the protein's function in mitochondrial biogenesis and erythropoiesis presents a promising avenue for therapeutic exploration. The elucidation of Stress-70 protein, mitochondrial's role could lead to novel treatments for these diseases.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.