Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

By deploying molecular simulations, our approach comprehensively covers a broad array of proteins, tracking their flexibility and dynamics individually and within complexes. Ensemble virtual screening is utilised to take into account conformational dynamics, identifying pivotal binding sites located within functional regions and at allosteric locations. This thorough exploration ensures that every conceivable mechanism of action is considered, aiming to identify new therapeutic targets and advance lead compounds throughout a vast spectrum of biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
P40937

UPID:
RFC5_HUMAN

ALTERNATIVE NAMES:
Activator 1 36 kDa subunit; Activator 1 subunit 5; Replication factor C 36 kDa subunit

ALTERNATIVE UPACC:
P40937; A8MZ62; B3KSX8

BACKGROUND:
The protein Replication factor C subunit 5, with its alternative identities such as Replication factor C 36 kDa subunit, is integral to the DNA replication process. It assists in the elongation phase of DNA synthesis, working alongside DNA polymerase delta and epsilon, and requires the cooperation of PCNA and activator 1. This essential function underscores its importance in maintaining cellular integrity and the accurate transmission of genetic information.

THERAPEUTIC SIGNIFICANCE:
Exploring the functionalities of Replication factor C subunit 5 unveils potential avenues for therapeutic intervention. Given its critical role in DNA replication and repair, targeting this protein could lead to innovative treatments for conditions arising from errors in these processes.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.