Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


We utilise our cutting-edge, exclusive workflow to develop focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology employs molecular simulations to explore a wide array of proteins, capturing their dynamic states both individually and within complexes. Through ensemble virtual screening, we address conformational mobility, uncovering binding sites within functional regions and remote allosteric locations. This thorough exploration ensures no potential mechanism of action is overlooked, aiming to discover novel therapeutic targets and lead compounds across an extensive spectrum of biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
P42658

UPID:
DPP6_HUMAN

ALTERNATIVE NAMES:
DPPX; Dipeptidyl aminopeptidase-related protein; Dipeptidyl peptidase 6; Dipeptidyl peptidase IV-like protein; Dipeptidyl peptidase VI

ALTERNATIVE UPACC:
P42658

BACKGROUND:
The protein Dipeptidyl aminopeptidase-like protein 6, known by alternative names such as DPPX and DPP6, is instrumental in the regulation of the potassium channel KCND2. This regulation is vital for maintaining proper electrical signaling in the heart and brain. DPP6's role extends beyond enzyme activity to include modulation of ion channel function, illustrating its multifaceted impact on cellular communication.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Dipeptidyl aminopeptidase-like protein 6 could open doors to potential therapeutic strategies. Its direct involvement in diseases like familial paroxysmal ventricular fibrillation 2 and intellectual developmental disorder, autosomal dominant 33, positions DPP6 as a key target for drug discovery efforts aimed at treating these conditions.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.