Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

This approach involves comprehensive molecular simulations of the catalytic and allosteric binding pockets and ensemble virtual screening that accounts for their conformational flexibility. In the case of designing modulators, the structural adjustments caused by reaction intermediates are considered to improve activity and selectivity.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
P42694

UPID:
HELZ_HUMAN

ALTERNATIVE NAMES:
Down-regulated in human cancers protein

ALTERNATIVE UPACC:
P42694; I6L9H4

BACKGROUND:
The protein identified as Probable helicase with zinc finger domain, alternatively known as Down-regulated in human cancers protein, plays a pivotal role in RNA metabolism within the developing embryo. This suggests its involvement in critical developmental pathways and cellular mechanisms, underlining its importance in embryogenesis.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of the Probable helicase with zinc finger domain offers a pathway to novel therapeutic approaches. Given its significant role in RNA metabolism and potential implications in human health, targeting this protein could lead to breakthroughs in treating developmental abnormalities and exploring cancer therapeutics.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.