Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


We employ our advanced, specialised process to create targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

By deploying molecular simulations, our approach comprehensively covers a broad array of proteins, tracking their flexibility and dynamics individually and within complexes. Ensemble virtual screening is utilised to take into account conformational dynamics, identifying pivotal binding sites located within functional regions and at allosteric locations. This thorough exploration ensures that every conceivable mechanism of action is considered, aiming to identify new therapeutic targets and advance lead compounds throughout a vast spectrum of biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
P49335

UPID:
PO3F4_HUMAN

ALTERNATIVE NAMES:
Brain-specific homeobox/POU domain protein 4; Octamer-binding protein 9; Octamer-binding transcription factor 9

ALTERNATIVE UPACC:
P49335; B2RC71; Q5H9G9; Q99410

BACKGROUND:
The protein POU domain, class 3, transcription factor 4, with alternative names including Brain-specific homeobox/POU domain protein 4, Octamer-binding protein 9, and Octamer-binding transcription factor 9, is identified as a probable transcription factor. Its primary action is observed broadly during the early stages of neural development and is restricted to a very limited set of neurons within the mature brain, indicating a specialized function.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of POU domain, class 3, transcription factor 4 could open doors to potential therapeutic strategies. Its involvement in Deafness, X-linked, 2, characterized by a unique combination of conductive and sensorineural hearing loss, underscores its potential as a target for developing treatments aimed at mitigating genetic forms of deafness.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.