Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
P51970

UPID:
NDUA8_HUMAN

ALTERNATIVE NAMES:
Complex I-19kD; Complex I-PGIV; NADH-ubiquinone oxidoreductase 19 kDa subunit

ALTERNATIVE UPACC:
P51970; B1AM93; Q9Y6N0

BACKGROUND:
The NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8, known alternatively as Complex I-19kD, Complex I-PGIV, or NADH-ubiquinone oxidoreductase 19 kDa subunit, is integral to mitochondrial energy metabolism. It is not directly involved in catalysis but is essential for electron transfer from NADH to ubiquinone in the respiratory chain.

THERAPEUTIC SIGNIFICANCE:
Linked to Mitochondrial complex I deficiency, nuclear type 37, a disorder affecting 1 in 5-10000 live births with diverse clinical manifestations, the study of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 holds promise for unveiling novel therapeutic avenues for mitochondrial diseases.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.