Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our high-tech, dedicated method is applied to construct targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
P52803

UPID:
EFNA5_HUMAN

ALTERNATIVE NAMES:
AL-1; EPH-related receptor tyrosine kinase ligand 7

ALTERNATIVE UPACC:
P52803

BACKGROUND:
Ephrin-A5, with aliases AL-1 and EPH-related receptor tyrosine kinase ligand 7, is integral to the development of neuronal, vascular, and epithelial tissues. It binds Eph receptors on adjacent cells, initiating contact-dependent bidirectional signaling that is crucial for cell migration, adhesion, and repulsion. This protein is involved in compartmentalized signaling within caveolae-like membrane microdomains, requiring Fyn tyrosine kinase activity. It activates EPHA3 and EPHA2 receptors, affecting cell adhesion, cytoskeletal organization, and lens transparency, and plays a role in axon fasciculation and insulin secretion regulation.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Ephrin-A5 offers a promising avenue for developing therapeutic interventions aimed at improving tissue development and addressing diabetes by modulating insulin secretion.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.