Focused On-demand Libraries - Receptor.AI Collaboration
Explore the Potential with AI-Driven Innovation
Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.
Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.
Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.
We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.
It includes in-depth molecular simulations of both the catalytic and allosteric binding pockets, with ensemble virtual screening focusing on their conformational flexibility. For modulators, the process includes considering the structural shifts due to reaction intermediates to boost activity and selectivity.
Our library stands out due to several important features:
- The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.
- Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.
- Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.
- Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.
Receptor.AI
P54252
UPID:
ATX3_HUMAN
ALTERNATIVE NAMES:
Machado-Joseph disease protein 1; Spinocerebellar ataxia type 3 protein
ALTERNATIVE UPACC:
P54252; A7LFZ5; D6RDL9; E9PB63; O15284; O15285; O15286; Q8N189; Q96TC3; Q96TC4; Q9H3N0