Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes in-depth molecular simulations of both the catalytic and allosteric binding pockets, with ensemble virtual screening focusing on their conformational flexibility. For modulators, the process includes considering the structural shifts due to reaction intermediates to boost activity and selectivity.


Key features that set our library apart include:


  • The Receptor.AI platform integrates extensive information about the target protein, such as historical experiments, academic research, known ligands, and structural insights, thereby increasing the likelihood of identifying highly relevant compounds.

  • The platform’s sophisticated molecular simulations are designed to discover potential binding sites, ensuring that our focused library is optimal for the discovery of allosteric inhibitors and binders for cryptic pockets.

  • With over 50 customisable AI models, verified through extensive testing in commercial drug discovery and research, Receptor.AI is efficient, reliable, and precise. These models are essential in the production of our focused libraries.

  • Receptor.AI not only produces focused libraries but also provides full services and solutions at every stage of preclinical drug discovery, with a success-based pricing structure that aligns our interests with the success of your project.


PARTNER
Receptor.AI
 
UPACC
P56192

UPID:
SYMC_HUMAN

ALTERNATIVE NAMES:
Methionyl-tRNA synthetase

ALTERNATIVE UPACC:
P56192; B3KVK7; Q14895; Q53H14; Q96A15; Q96BZ0; Q9NSE0

BACKGROUND:
Methionine--tRNA ligase, cytoplasmic, known alternatively as Methionyl-tRNA synthetase, is pivotal in the synthesis of proteins by catalyzing the binding of methionine to its tRNA. This action is crucial for the initiation of protein synthesis, underscoring the enzyme's essential role in maintaining cellular function and integrity.

THERAPEUTIC SIGNIFICANCE:
Given its involvement in critical diseases like Interstitial lung and liver disease, Charcot-Marie-Tooth disease, axonal, 2U, and Trichothiodystrophy 9, non-photosensitive, Methionine--tRNA ligase, cytoplasmic represents a significant target for drug discovery. Exploring the enzyme's function could lead to groundbreaking therapeutic interventions for these debilitating conditions.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.