Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


We use our state-of-the-art dedicated workflow for designing focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology employs molecular simulations to explore a wide array of proteins, capturing their dynamic states both individually and within complexes. Through ensemble virtual screening, we address conformational mobility, uncovering binding sites within functional regions and remote allosteric locations. This thorough exploration ensures no potential mechanism of action is overlooked, aiming to discover novel therapeutic targets and lead compounds across an extensive spectrum of biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
P62841

UPID:
RS15_HUMAN

ALTERNATIVE NAMES:
40S ribosomal protein S15; RIG protein

ALTERNATIVE UPACC:
P62841; A5D8V9; P11174; Q3KRA1; Q9UDC2

BACKGROUND:
Small ribosomal subunit protein uS19, known alternatively as 40S ribosomal protein S15 or RIG protein, is a key player in the ribosome, the cell's protein factory. This protein is part of the small ribosomal subunit and is essential for the accurate translation of mRNA into proteins, a process vital for cellular health and function.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions and mechanisms of Small ribosomal subunit protein uS19 offers a pathway to novel therapeutic approaches. Given its central role in protein synthesis, targeting this protein could provide new avenues for treating conditions associated with abnormal protein production.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.