Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our high-tech, dedicated method is applied to construct targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
P62993

UPID:
GRB2_HUMAN

ALTERNATIVE NAMES:
Adapter protein GRB2; Protein Ash; SH2/SH3 adapter GRB2

ALTERNATIVE UPACC:
P62993; P29354; Q14450; Q63057; Q63059

BACKGROUND:
The Growth factor receptor-bound protein 2 (GRB2), also known as Adapter protein GRB2, Protein Ash, and SH2/SH3 adapter GRB2, serves as a critical link in the transduction of signals from cell surface growth factor receptors to the Ras signaling pathway. It uniquely inhibits EGF-induced transactivation of a RAS-responsive element without binding to phosphorylated EGFR, thereby acting as a dominant negative protein over GRB2 and potentially triggering programmed cell death by suppressing proliferative signals.

THERAPEUTIC SIGNIFICANCE:
Exploring the functionalities of Growth factor receptor-bound protein 2 unveils new avenues for developing targeted therapeutic interventions.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.