Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


We use our state-of-the-art dedicated workflow for designing focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
P80075

UPID:
CCL8_HUMAN

ALTERNATIVE NAMES:
HC14; Monocyte chemoattractant protein 2; Monocyte chemotactic protein 2; Small-inducible cytokine A8

ALTERNATIVE UPACC:
P80075; A0AV77; P78388

BACKGROUND:
The protein known as C-C motif chemokine 8, with alternative names such as HC14, Monocyte chemotactic protein 2, and Small-inducible cytokine A8, is crucial for immune system function. It attracts various immune cells and may influence tumor biology and inflammation. The protein's interaction with heparin and its inhibitory effects on other chemokines in its processed form underscore its complex role in immune regulation.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of C-C motif chemokine 8 offers a promising avenue for therapeutic intervention. Its central role in directing immune cell traffic and modulating inflammatory processes positions it as a key target for drug discovery in managing immune-related disorders and cancer.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.