Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q06278

UPID:
AOXA_HUMAN

ALTERNATIVE NAMES:
Aldehyde oxidase 1; Azaheterocycle hydroxylase

ALTERNATIVE UPACC:
Q06278; O14765; Q53RR8; Q53TV3; Q9BYF0; Q9UPG6

BACKGROUND:
Aldehyde oxidase, with alternative names such as Aldehyde oxidase 1 and Azaheterocycle hydroxylase, is key in oxidizing a variety of substrates, including aromatic azaheterocycles and aldehydes. It is instrumental in the metabolism of xenobiotics and the bioactivation of certain prodrugs, such as the conversion of 6-deoxypenciclovir to the antiviral agent penciclovir. The enzyme's role extends to the regulation of reactive oxygen species homeostasis and possibly adipogenesis, indicating its broad biological significance.

THERAPEUTIC SIGNIFICANCE:
The exploration of Aldehyde oxidase's functions could lead to novel therapeutic approaches. Given its critical role in drug metabolism and the regulation of cellular oxidative balance, targeting this enzyme may offer new avenues for enhancing drug bioactivation and treating diseases associated with oxidative stress.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.