Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q13451

UPID:
FKBP5_HUMAN

ALTERNATIVE NAMES:
51 kDa FK506-binding protein; 54 kDa progesterone receptor-associated immunophilin; Androgen-regulated protein 6; FF1 antigen; FK506-binding protein 5; FKBP54; HSP90-binding immunophilin; Rotamase

ALTERNATIVE UPACC:
Q13451; F5H7R1; Q59EB8; Q5TGM6

BACKGROUND:
The protein Peptidyl-prolyl cis-trans isomerase FKBP5, also referred to as FKBP54, is integral to the regulation of steroid hormone receptors and Akt/AKT1 signaling. By facilitating the assembly of the IKK complex, it plays a significant role in NF-kappaB activation and the production of IFN, highlighting its importance in cellular signaling pathways.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Peptidyl-prolyl cis-trans isomerase FKBP5 offers a promising avenue for the development of novel therapeutic approaches. Its critical role in modulating immune responses and receptor signaling presents an opportunity for targeted drug design, potentially leading to breakthroughs in treating diseases linked to these pathways.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.