Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


We employ our advanced, specialised process to create targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
Q13683

UPID:
ITA7_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q13683; B4E3U0; C9JMD3; C9JMZ6; O43197; Q86W93; Q9NY89; Q9UET0; Q9UEV2

BACKGROUND:
The protein Integrin alpha-7 is integral to the structural integrity and function of myofibers, acting as the primary receptor for laminin in muscle cells. It influences myoblast shape, mobility, and viability, and is involved in Schwann cell interaction with laminin-2. Its isoforms have distinct roles in promoting myoblast migration on various laminin substrates.

THERAPEUTIC SIGNIFICANCE:
The direct link between Integrin alpha-7 deficiency and congenital muscular dystrophy highlights its therapeutic significance. Targeting the pathways involving Integrin alpha-7 could lead to innovative treatments for muscle-related diseases, emphasizing the importance of further research into its functions and mechanisms.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.