Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

This approach involves comprehensive molecular simulations of the catalytic and allosteric binding pockets and ensemble virtual screening that accounts for their conformational flexibility. In the case of designing modulators, the structural adjustments caused by reaction intermediates are considered to improve activity and selectivity.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q14790

UPID:
CASP8_HUMAN

ALTERNATIVE NAMES:
Apoptotic cysteine protease; Apoptotic protease Mch-5; CAP4; FADD-homologous ICE/ced-3-like protease; FADD-like ICE; ICE-like apoptotic protease 5; MORT1-associated ced-3 homolog

ALTERNATIVE UPACC:
Q14790; O14676; Q14791; Q14792; Q14793; Q14794; Q14795; Q14796; Q15780; Q15806; Q53TT5; Q8TDI1; Q8TDI2; Q8TDI3; Q8TDI4; Q8TDI5; Q96T22; Q9C0K4; Q9UQ81

BACKGROUND:
Caspase-8 serves as an essential initiator protease in programmed cell death, regulating apoptosis, necroptosis, and pyroptosis. Its ability to cleave and activate downstream effector caspases positions it as a key player in the extrinsic apoptosis pathway. Furthermore, Caspase-8's role in preventing tissue damage during development and its involvement in innate immunity by mediating cytokine production underline its multifaceted biological significance.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Caspase-8 could open doors to potential therapeutic strategies, especially considering its association with Caspase-8 deficiency. This condition, characterized by immunodeficiency and recurrent infections, underscores the protein's potential as a therapeutic target in enhancing immune responses and treating related disorders.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.