Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The method includes detailed molecular simulations of the catalytic and allosteric binding pockets, along with ensemble virtual screening that considers their conformational flexibility. In the design of modulators, structural changes induced by reaction intermediates are taken into account to enhance activity and selectivity.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q16566

UPID:
KCC4_HUMAN

ALTERNATIVE NAMES:
CaM kinase-GR

ALTERNATIVE UPACC:
Q16566; D3DSZ7

BACKGROUND:
The enzyme Calcium/calmodulin-dependent protein kinase type IV, also known as CaM kinase-GR, is essential for the phosphorylation of several transcription activators including CREB1 and MEF2, influencing immune responses, inflammation, and neural processes. It is involved in T-cell antigen receptor signaling, osteoclast and dendritic cell lifecycle, and plays a role in hippocampal neuron nuclei for memory consolidation and LTP enhancement.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Calcium/calmodulin-dependent protein kinase type IV offers promising avenues for developing novel therapeutic approaches.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.