Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


We employ our advanced, specialised process to create targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The procedure entails thorough molecular simulations of the catalytic and allosteric binding pockets, accompanied by ensemble virtual screening that factors in their conformational flexibility. When developing modulators, the structural modifications brought about by reaction intermediates are factored in to optimize activity and selectivity.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q16836

UPID:
HCDH_HUMAN

ALTERNATIVE NAMES:
Medium and short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase; Short-chain 3-hydroxyacyl-CoA dehydrogenase

ALTERNATIVE UPACC:
Q16836; J3KQ17; O00324; O00397; O00753; Q4W5B4

BACKGROUND:
The enzyme Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial, plays a pivotal role in the control of insulin secretion and energy metabolism by catalyzing key reactions in fatty acid beta-oxidation. It is essential for processing medium and short-chain 3-hydroxy fatty acyl-CoAs.

THERAPEUTIC SIGNIFICANCE:
Given its involvement in significant metabolic pathways and diseases such as 3-alpha-hydroxyacyl-CoA dehydrogenase deficiency and familial Hyperinsulinemic hypoglycemia, targeting this protein could offer new avenues for therapeutic intervention.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.