Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


Our high-tech, dedicated method is applied to construct targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q5JTJ3

UPID:
COA6_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q5JTJ3; Q5JTJ2; Q5JTJ4; Q8TA88

BACKGROUND:
Involved in mitochondrial energy production, Cytochrome c oxidase assembly factor 6 homolog is key for assembling complex IV of the respiratory chain. This process is vital for the efficient transfer of electrons and the generation of ATP, highlighting the protein's role in cellular metabolism and energy homeostasis.

THERAPEUTIC SIGNIFICANCE:
Associated with Mitochondrial complex IV deficiency, nuclear type 13, characterized by metabolic hypotonia and mitochondrial dysfunction, the study of Cytochrome c oxidase assembly factor 6 homolog offers a promising avenue for developing treatments for mitochondrial disorders.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.