Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The procedure entails thorough molecular simulations of the catalytic and allosteric binding pockets, accompanied by ensemble virtual screening that factors in their conformational flexibility. When developing modulators, the structural modifications brought about by reaction intermediates are factored in to optimize activity and selectivity.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q5VWZ2

UPID:
LYPL1_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q5VWZ2; A8K677; Q5VWZ3; Q7Z4A3; Q96AV0

BACKGROUND:
The Lysophospholipase-like protein 1, with the unique identifier Q5VWZ2, plays a pivotal role in cellular biochemistry. It is distinguished by its depalmitoylating activity on KCNMA1, a key player in cell membrane potential regulation. This protein's inability to act as a phospholipase or triacylglycerol lipase, combined with its preference for short-chain substrates, highlights its specialized function within the lipid metabolism landscape.

THERAPEUTIC SIGNIFICANCE:
The exploration of Lysophospholipase-like protein 1's function offers a promising avenue for therapeutic intervention. Given its targeted action on KCNMA1, research into this protein could yield novel approaches to manipulating ion channel activity, potentially leading to breakthroughs in the treatment of diseases where potassium channel dysregulation is a factor.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.