Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our strategy employs molecular simulations to explore an extensive range of proteins, capturing their dynamics both individually and within complexes with other proteins. Through ensemble virtual screening, we address proteins' conformational mobility, uncovering key binding sites at both functional regions and remote allosteric locations. This comprehensive investigation ensures a thorough assessment of all potential mechanisms of action, with the goal of discovering innovative therapeutic targets and lead molecules across across diverse biological functions.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q6PD74

UPID:
AAGAB_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q6PD74; B4DG44; Q6FI86; Q7Z5X9; Q9H0P1; Q9HAK0

BACKGROUND:
The protein Alpha- and gamma-adaptin-binding protein p34 is implicated in the recycling of EGFR, a key process in cellular signaling and receptor regulation. Its function is vital for the proper execution of cellular growth and communication pathways.

THERAPEUTIC SIGNIFICANCE:
Given its link to Keratoderma, palmoplantar, punctate 1A, exploring Alpha- and gamma-adaptin-binding protein p34's role further could lead to innovative treatments for this and potentially other related dermatological conditions. Its multifaceted role in biological systems makes it an intriguing subject for scientific inquiry and therapeutic development.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.