Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We employ our advanced, specialised process to create targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The procedure entails thorough molecular simulations of the catalytic and allosteric binding pockets, accompanied by ensemble virtual screening that factors in their conformational flexibility. When developing modulators, the structural modifications brought about by reaction intermediates are factored in to optimize activity and selectivity.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
Q7RTY5

UPID:
PRS48_HUMAN

ALTERNATIVE NAMES:
Epidermis-specific serine protease-like protein

ALTERNATIVE UPACC:
Q7RTY5; Q08E82; Q0VAD4

BACKGROUND:
The protein Serine protease 48, with alternative names such as Epidermis-specific serine protease-like protein, is integral to skin health. It contributes significantly to the regulation of epidermal barrier function and cellular turnover. This protease's activity underscores its importance in the complex ecosystem of the skin.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Serine protease 48 holds promise for novel therapeutic approaches. Given its critical role in skin physiology, targeting this protease could lead to breakthroughs in treating skin disorders and improving skin regeneration.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.