Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We employ our advanced, specialised process to create targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q86WI3

UPID:
NLRC5_HUMAN

ALTERNATIVE NAMES:
Caterpiller protein 16.1; Nucleotide-binding oligomerization domain protein 27; Nucleotide-binding oligomerization domain protein 4

ALTERNATIVE UPACC:
Q86WI3; B5MEF1; C9JMD8; Q6P4A6; Q86VM7; Q8NF42; Q8TEE2; Q8TEJ1; Q969L7

BACKGROUND:
The multifunctional Protein NLRC5, recognized by its alternative names such as Caterpiller protein 16.1 and Nucleotide-binding oligomerization domain proteins 27 and 4, serves as a key regulator in the NF-kappa-B and type I interferon signaling pathways. Its involvement extends to regulating the type II interferon signaling pathway, underscoring its critical function in maintaining innate immunity and bolstering antiviral defenses.

THERAPEUTIC SIGNIFICANCE:
Exploring the functionalities of Protein NLRC5 holds promise for unveiling novel therapeutic approaches.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.