Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

By deploying molecular simulations, our approach comprehensively covers a broad array of proteins, tracking their flexibility and dynamics individually and within complexes. Ensemble virtual screening is utilised to take into account conformational dynamics, identifying pivotal binding sites located within functional regions and at allosteric locations. This thorough exploration ensures that every conceivable mechanism of action is considered, aiming to identify new therapeutic targets and advance lead compounds throughout a vast spectrum of biological functions.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q86Z14

UPID:
KLOTB_HUMAN

ALTERNATIVE NAMES:
Klotho beta-like protein

ALTERNATIVE UPACC:
Q86Z14; Q2M3K8

BACKGROUND:
The protein Beta-klotho, identified by its alternative name Klotho beta-like protein, contributes significantly to metabolic regulation. It suppresses the transcription of CYP7A1, the rate-limiting enzyme in the synthesis of bile acids, and augments the interaction between FGFR1, FGFR4, and FGF21. This activity suggests a pivotal role in the regulation of lipid metabolism and signaling mechanisms.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Beta-klotho offers a promising avenue for the development of novel therapeutic interventions. Its critical role in lipid metabolism and signal transduction presents it as a valuable target for addressing metabolic diseases.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.