Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes in-depth molecular simulations of both the catalytic and allosteric binding pockets, with ensemble virtual screening focusing on their conformational flexibility. For modulators, the process includes considering the structural shifts due to reaction intermediates to boost activity and selectivity.


Key features that set our library apart include:


  • The Receptor.AI platform integrates extensive information about the target protein, such as historical experiments, academic research, known ligands, and structural insights, thereby increasing the likelihood of identifying highly relevant compounds.

  • The platform’s sophisticated molecular simulations are designed to discover potential binding sites, ensuring that our focused library is optimal for the discovery of allosteric inhibitors and binders for cryptic pockets.

  • With over 50 customisable AI models, verified through extensive testing in commercial drug discovery and research, Receptor.AI is efficient, reliable, and precise. These models are essential in the production of our focused libraries.

  • Receptor.AI not only produces focused libraries but also provides full services and solutions at every stage of preclinical drug discovery, with a success-based pricing structure that aligns our interests with the success of your project.


PARTNER
Receptor.AI
 
UPACC
Q8IUH5

UPID:
ZDH17_HUMAN

ALTERNATIVE NAMES:
Acyltransferase ZDHHC17; DHHC domain-containing cysteine-rich protein 17; Huntingtin yeast partner H; Huntingtin-interacting protein 14; Huntingtin-interacting protein 3; Huntingtin-interacting protein H; Putative MAPK-activating protein PM11; Putative NF-kappa-B-activating protein 205; Zinc finger DHHC domain-containing protein 17

ALTERNATIVE UPACC:
Q8IUH5; B4DR39; O75407; Q7Z2I0; Q86W89; Q86YK0; Q9P088; Q9UPZ8

BACKGROUND:
ZDHHC17, also referred to as Huntingtin yeast partner H and Zinc finger DHHC domain-containing protein 17, is integral to various cellular mechanisms through its palmitoyltransferase function. It targets a broad spectrum of proteins for palmitoylation, affecting neuronal function, Mg(2+) transport, and Golgi membrane localization of DNAJC5, thereby impacting critical signaling pathways and cellular trafficking.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of ZDHHC17 offers a promising avenue for the development of novel therapeutic approaches.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.