Focused On-demand Libraries - Receptor.AI Collaboration
Explore the Potential with AI-Driven Innovation
The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.
Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.
The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.
Our top-notch dedicated system is used to design specialised libraries for enzymes.
It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.
Several key aspects differentiate our library:
- Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.
- The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.
- Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.
- In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.
Receptor.AI
Q8IXI2
UPID:
MIRO1_HUMAN
ALTERNATIVE NAMES:
Rac-GTP-binding protein-like protein; Ras homolog gene family member T1
ALTERNATIVE UPACC:
Q8IXI2; A4FVB6; A6NFV0; B4DG48; J9JIH9; Q6NUR3; Q6P9F8; Q6PJG1; Q6YMW8; Q86UB0; Q8IW28; Q8IXJ7; Q9H067; Q9H9N8; Q9NUZ2