Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


Our high-tech, dedicated method is applied to construct targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The method includes detailed molecular simulations of the catalytic and allosteric binding pockets, along with ensemble virtual screening that considers their conformational flexibility. In the design of modulators, structural changes induced by reaction intermediates are taken into account to enhance activity and selectivity.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q8N0Z8

UPID:
PUSL1_HUMAN

ALTERNATIVE NAMES:
tRNA pseudouridylate synthase-like 1; tRNA-uridine isomerase-like 1

ALTERNATIVE UPACC:
Q8N0Z8; B4DP76; Q5TA41

BACKGROUND:
The enzyme tRNA pseudouridine synthase-like 1, with alternative names such as tRNA-uridine isomerase-like 1, is pivotal in RNA biology. It catalyzes the conversion of uridine to pseudouridine in tRNA, a modification essential for tRNA stability and proper translation.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of tRNA pseudouridine synthase-like 1 holds promise for unveiling novel therapeutic avenues. As it plays a significant role in the post-transcriptional modification of RNA, targeting this enzyme could lead to innovative treatments for disorders associated with RNA processing anomalies.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.


Error: Google reCAPTCHA script is not loaded. Make sure your browser is not blocking it or contact the site administrator.