Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our high-tech, dedicated method is applied to construct targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q8NFU5

UPID:
IPMK_HUMAN

ALTERNATIVE NAMES:
Inositol 1,3,4,6-tetrakisphosphate 5-kinase

ALTERNATIVE UPACC:
Q8NFU5

BACKGROUND:
The enzyme Inositol polyphosphate multikinase, with alternative name Inositol 1,3,4,6-tetrakisphosphate 5-kinase, is integral to the biosynthesis of highly phosphorylated inositol phosphates. These molecules, including inositol pentakisphosphate and hexakisphosphate, play key roles in regulating cellular functions and signaling pathways.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Inositol polyphosphate multikinase offers a promising pathway to uncover novel therapeutic approaches. Its critical role in the activation and localization of phospho-MLKL during necroptosis positions it as a potential target for modulating cell death mechanisms in various diseases.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.