Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We employ our advanced, specialised process to create targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The method includes detailed molecular simulations of the catalytic and allosteric binding pockets, along with ensemble virtual screening that considers their conformational flexibility. In the design of modulators, structural changes induced by reaction intermediates are taken into account to enhance activity and selectivity.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q8TDX7

UPID:
NEK7_HUMAN

ALTERNATIVE NAMES:
Never in mitosis A-related kinase 7

ALTERNATIVE UPACC:
Q8TDX7; A6NGT8

BACKGROUND:
The protein kinase Nek7, alternatively named Never in mitosis A-related kinase 7, plays a critical role in the progression of the mitotic cell cycle. It ensures the formation of a robust mitotic spindle and cytokinesis by initiating microtubule nucleation at the centrosome. Nek7 phosphorylates EML4, facilitating efficient chromosome alignment during mitosis. Additionally, Nek7 serves a unique function in activating the NLRP3 inflammasome, crucial for the immune response, by promoting the formation of the NLRP3:PYCARD complex, independent of its kinase activity.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Serine/threonine-protein kinase Nek7 unveils potential avenues for therapeutic intervention. Its dual role in cell division and immune regulation positions it as a promising target in developing treatments for cancer and autoimmune conditions.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.